Ray Transforms in Hyperbolic Geometry
نویسنده
چکیده
We derive explicit inversion formulae for the attenuated geodesic and horocyclic ray transforms of functions and vector fields on two-dimensional manifolds equipped with the hyperbolic metric. The inversion formulae are based on a suitable complexification of the associated vector fields so as to recast the reconstruction as a Riemann Hilbert problem. The inversion formulae have a very similar structure to their counterparts in Euclidean geometry and may therefore be amenable to efficient discretizations and numerical inversions. An important field of application is geophysical imaging when absorption effects are accounted for.
منابع مشابه
Metric and periodic lines in the Poincare ball model of hyperbolic geometry
In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.
متن کاملAn Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملHyperbolization of Euclidean Ornaments
In this article we outline a method that automatically transforms an Euclidean ornament into a hyperbolic one. The necessary steps are pattern recognition, symmetry detection, extraction of a Euclidean fundamental region, conformal deformation to a hyperbolic fundamental region and tessellation of the hyperbolic plane with this patch. Each of these steps has its own mathematical subtleties that...
متن کاملOn the Geometrical Gyro-Kinetic Theory
Considering a Hamiltonian Dynamical System describing the motion of charged particle in a Tokamak or a Stellarator, we build a change of coordinates to reduce its dimension. This change of coordinates is in fact an intricate succession of mappings that are built using Hyperbolic Partial Differential Equations, Differential Geometry, Hamiltonian Dynamical System Theory and Symplectic Geometry, L...
متن کاملInversion of the circular averages transform using the Funk transform
The integral of a function defined on the half-plane along the semi-circles centered on the boundary of the half-plane is known as the circular averages transform. Circular averages transform arises in many tomographic image reconstruction problems. In particular, in synthetic aperture radar (SAR) when the transmitting and receiving antennas are colocated, the received signal is modeled as the ...
متن کامل